Calcium-dependent desensitization of vanilloid receptor TRPV1: a mechanism possibly involved in analgesia induced by topical application of capsaicin.

نویسندگان

  • L Vyklický
  • K Nováková-Tousová
  • J Benedikt
  • A Samad
  • F Touska
  • V Vlachová
چکیده

The rationale for the topical application of capsaicin and other vanilloids in the treatment of pain is that such compounds selectively excite and subsequently desensitize nociceptive neurons. This desensitization is triggered by the activation of vanilloid receptors (TRPV1), which leads to an elevation in intracellular free Ca2+ levels. Depending on the vanilloid concentration and duration of exposure, the Ca2+ influx via TRPV1 desensitizes the channels themselves, which may represent not only a feedback mechanism protecting the cell from toxic Ca2+ overload, but also likely contributes to the analgesic effects of capsaicin. This review summarizes the current state of knowledge concerning the mechanisms that underlie the acute capsaicin-induced Ca2+-dependent desensitization of TRPV1 channels and explores to what extent they may contribute to capsaicin-induced analgesia. In view of the polymodal nature of TRPV1, we illustrate how the channels behave in their desensitized state when activated by other stimuli such as noxious heat or depolarizing voltages. We also show that the desensitized channel can be strongly reactivated by capsaicin at concentrations higher than those previously used to desensitize it. We provide a possible explanation for a high incidence of adverse effects of topical capsaicin and point to a need for more accurate clinical criteria for employing it as a reliable remedy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cannabinoid WIN 55,212-2 inhibits transient receptor potential vanilloid 1 (TRPV1) and evokes peripheral antihyperalgesia via calcineurin.

Cannabinoids can evoke antihyperalgesia and antinociception at a peripheral site of action. However, the signaling pathways mediating these effects are not clearly understood. We tested the hypothesis that certain cannabinoids directly inhibit peripheral capsaicin-sensitive nociceptive neurons by dephosphorylating and desensitizing transient receptor potential vanilloid 1 (TRPV1) via a calcium ...

متن کامل

The ubiquitin ligase MYCBP2 regulates transient receptor potential vanilloid receptor 1 (TRPV1) internalization through inhibition of p38 MAPK signaling.

The E3 ubiquitin ligase MYCBP2 negatively regulates neuronal growth, synaptogenesis, and synaptic strength. More recently it was shown that MYCBP2 is also involved in receptor and ion channel internalization. We found that mice with a MYCBP2-deficiency in peripheral sensory neurons show prolonged thermal hyperalgesia. Loss of MYCBP2 constitutively activated p38 MAPK and increased expression of ...

متن کامل

High-concentration capsaicin patch (qutenza) - a new step in treatment of neuropathic pain.

T he diagnosis and the management of neuropathic pain still remain challenging. The main reason for these is the variety of underlying mechanisms of neuropathic pain. Different treatment regimens are needed for different pain mechanisms, thereby a mechanism based treatment approach would result in efficient analgesia. It is worth to mention that the pain system is not static and the changes occ...

متن کامل

Morphine-induced analgesic tolerance is associated with alteration of protein kinase Cγ and transient receptor potential vanilloid type 1 genes expression in rat lumbosacral cord and midbrain

Introduction: Transient receptor potential vanilloid type 1 (TRPV1) and protein kinase Cγ (PKCγ) are involved in sensitization/desensitization to noxious stimuli. We aimed to examine the gene expression levels of TRPV1 and PKCγ in rat lumbosacral cord and midbrain on days 1, 4 and 8 of induction of morphine analgesic tolerance. Methods: Two groups of male Wistar rats received ...

متن کامل

Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism.

Camphor is a naturally occurring compound that is used as a major active ingredient of balms and liniments supplied as topical analgesics. Despite its long history of common medical use, the underlying molecular mechanism of camphor action is not understood. Capsaicin and menthol, two other topically applied agents widely used for similar purposes, are known to excite and desensitize sensory ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological research

دوره 57 Suppl 3  شماره 

صفحات  -

تاریخ انتشار 2008